Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dev Biol ; 6(2)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914077

RESUMO

During limb development, fibroblast growth factors (Fgfs) govern proximal⁻distal outgrowth and patterning. FGFs also synchronize developmental patterning between the proximal⁻distal and anterior⁻posterior axes by maintaining Sonic hedgehog (Shh) expression in cells of the zone of polarizing activity (ZPA) in the distal posterior mesoderm. Shh, in turn, maintains Fgfs in the apical ectodermal ridge (AER) that caps the distal tip of the limb bud. Crosstalk between Fgf and Shh signaling is critical for patterned limb development, but the mechanisms underlying this feedback loop are not well-characterized. Implantation of Fgf beads in the proximal posterior limb bud can maintain SHH expression in the former ZPA domain (evident 3 h after application), while prolonged exposure (24 h) can induce SHH outside of this domain. Although temporally and spatially disparate, comparative analysis of transcriptome data from these different populations accentuated genes involved in SHH regulation. Comparative analysis identified 25 candidates common to both treatments, with eight linked to SHH expression or function. Furthermore, we demonstrated that LHX2, a LIM Homeodomain transcription factor, is an intermediate in the FGF-mediated regulation of SHH. Our data suggest that LHX2 acts as a competency factor maintaining distal posterior SHH expression subjacent to the AER.

2.
Carbohydr Polym ; 180: 376-384, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29103517

RESUMO

Chitosan polymers (Cs), from which microparticles (CsM) may be precipitated to deliver various intracellular payloads, are generally considered biologically inert. We examined the impact of cell culture conditions on CsM size and the effect of chitosan on CD59 expression in primary human smooth muscle cells. We found that particle concentration and incubation time in biological buffers augmented particle size. Between pH 7.0 and pH 7.5, CsM size increased abruptly. We utilized CsM containing a plasmid with a gene for CD59 (pCsM) to transfect cells. Both CD59 mRNA and the number of CD59-positive cells were increased after pCsM treatment. Unexpectedly, CsM also augmented the number of CD59-positive cells. Cs alone enhanced CD59 expression more potently than either pCSM or CsM. This observation strongly suggests that chitosan is in fact bioactive and that chitosan-only controls should be included to avoid misattributing the activity of the delivery agent with that of the payload.


Assuntos
Quitosana/análogos & derivados , Nanopartículas/química , Transfecção/métodos , Antígenos CD59/genética , Antígenos CD59/metabolismo , Células Cultivadas , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nanopartículas/efeitos adversos , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Development ; 144(11): 2009-2020, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455377

RESUMO

Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% (n=617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis-regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization.


Assuntos
Padronização Corporal/genética , Extremidades/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Animais , Galinhas , Imunoprecipitação da Cromatina , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...